
Basic Configuration of dnsmasq in an Incus Container
on Debian with Netplan

1 Introduction
This guide provides step-by-step instructions for setting up dnsmasq as a DNS and DHCP
server in an Incus container running Debian. The network configuration is managed using
Netplan to ensure proper network integration.

2 Prerequisites
Before proceeding, ensure the following:

• Incus is installed on the host system (sudo apt install incus).

• A Debian-based container is created in Incus.

• Basic knowledge of Linux networking and container management.

• Root or sudo access to the host and container.

3 Step-by-Step Configuration

3.1 Creating and Setting Up the Incus Container
Create a Debian container named dnsmasq-container using the following commands on
the host:

1 incus create images:debian /12 dnsmasq -container
2 incus config set dnsmasq -container security.syscalls.intercept.

mount true
3 incus config set dnsmasq -container security.nesting true
4 incus config set dnsmasq -container security.privileged true
5 incus start dnsmasq -container

The security.syscalls.intercept.mount, security.nesting, and security.privileged
settings are required for dnsmasq and Docker to function correctly in the container.

1



3.2 Firewall Configuration
To allow traffic forwarding between the incusbr0 bridge and the wlo1 wireless interface,
the following iptables rules are applied:

1 sudo iptables -A FORWARD -i incusbr0 -o wlo1 -j ACCEPT
2 sudo iptables -A FORWARD -i wlo1 -o incusbr0 -m state --state

RELATED ,ESTABLISHED -j ACCEPT

3.3 Installing Additional Packages
Install the necessary packages inside the container:

1 incus exec dnsmasq -container -- apt update
2 incus exec dnsmasq -container -- apt install -y \
3 netplan.io \
4 sudo vim nano git tmux mc zip unzip curl wget htop lynx \
5 iproute2 termshark bridge -utils \
6 python3 python3 -ipython python3 -pyroute2 python3 -scapy \
7 docker.io docker -compose

3.4 Configuring Users and Permissions
Configure user access and permissions within the container.

3.4.1 Changing the Root Password

Set the root password to "passroot":
1 incus exec dnsmasq -container -- bash -c ’echo␣"root:passroot"␣|␣

chpasswd ’

3.4.2 Adding a New User

Add a new user named "user" with the password "pass" and add them to the "sudo" and
"docker" groups:

1 incus exec dnsmasq -container -- useradd -m -s /bin/bash user
2 incus exec dnsmasq -container -- bash -c ’echo␣"user:pass"␣|␣

chpasswd ’
3 incus exec dnsmasq -container -- usermod -aG sudo user
4 incus exec dnsmasq -container -- usermod -aG docker user

3.5 Accessing the Container
Access the container’s shell:

1 incus exec dnsmasq -container -- bash

2



3.6 Installing dnsmasq
Update the package list and install dnsmasq:

1 incus exec dnsmasq -container -- apt update
2 incus exec dnsmasq -container -- apt install dnsmasq -y

3.7 Configuring the Network with Netplan
Configure the container’s network using Netplan to assign a static IP address. Create or
edit the Netplan configuration file at /etc/netplan/01-netcfg.yaml:

1 incus exec dnsmasq -container -- nano /etc/netplan /01- netcfg.yaml

Add the following configuration:
1 network:
2 version: 2
3 ethernets:
4 eth0:
5 dhcp4: no
6 addresses:
7 - 192.168.1.10/24
8 routes:
9 - to: default

10 via: 192.168.1.1
11 nameservers:
12 addresses: [8.8.8.8 , 8.8.4.4]

Apply the configuration:
1 incus exec dnsmasq -container -- netplan apply

3.8 Configuring dnsmasq
Edit the dnsmasq configuration file at /etc/dnsmasq.conf:

1 incus exec dnsmasq -container -- nano /etc/dnsmasq.conf

Add or modify the following settings to enable DNS and DHCP:
1 # DNS settings
2 domain -needed
3 bogus -priv
4 no -resolv
5 server =8.8.8.8
6 server =8.8.4.4
7 local=/ example.local/
8 domain=example.local
9

10 # DHCP settings
11 dhcp -range =192.168.1.100 ,192.168.1.200 ,12h

3



12 dhcp -option =3 ,192.168.1.1
13 dhcp -option =6 ,8.8.8.8 ,8.8.4.4

Explanation:

• domain-needed: Prevents incomplete domain names from being sent to upstream
DNS.

• bogus-priv: Blocks reverse DNS lookups for private IP ranges.

• no-resolv: Disables reading /etc/resolv.conf.

• server: Specifies upstream DNS servers (Google DNS in this case).

• local and domain: Configures a local domain.

• dhcp-range: Defines the IP range for DHCP clients (from 192.168.1.100 to 192.168.1.200,
lease time 12 hours).

• dhcp-option: Sets the default gateway (option 3) and DNS servers (option 6).

3.9 Starting and Enabling dnsmasq
Restart and enable the dnsmasq service:

1 incus exec dnsmasq -container -- systemctl restart dnsmasq
2 incus exec dnsmasq -container -- systemctl enable dnsmasq

Verify that dnsmasq is running:
1 incus exec dnsmasq -container -- systemctl status dnsmasq

3.10 Testing the Configuration
Test DNS resolution from within the container:

1 incus exec dnsmasq -container -- nslookup example.local
192.168.1.10

To test DHCP, connect a client device to the same network and verify that it receives an
IP address in the range 192.168.1.100–192.168.1.200.

4 Troubleshooting
If dnsmasq fails to start:

• Check the logs: incus exec dnsmasq-container – journalctl -u dnsmasq.

• Ensure no other service is using port 53 (DNS) or 67 (DHCP).

• Verify the network configuration with incus exec dnsmasq-container – ip a
and incus exec dnsmasq-container – ping 8.8.8.8.

4



5 Conclusion
This guide configures dnsmasq as a DNS and DHCP server in an Incus container on
Debian. The Netplan configuration ensures proper network setup. For advanced config-
urations, refer to the dnsmasq documentation (man dnsmasq).

5


