
Debugging the slen Function with GDB

May 22, 2025

1 Introduction

This document describes the slen function, a C function that calculates the length of
a null-terminated string, and details the debugging process using GDB on an embedded
target. The debugging session history is included to illustrate the steps taken to verify
the function’s correctness.

2 The slen Function

The slen function takes a string pointer and returns the number of characters until the
null terminator (\0). Below is the source code:

1 #include <stdint.h>

2

3 const char * ptr = "informatyk mpabi 0\n";

4

5 int slen (char *s) {

6 int n;

7 for (n = 0; *s != ’\0’; s++)

8 n++;

9 return n;

10 }

11

12 int main () {

13 int x = slen (ptr);

14 return 0;

15 }

The string ptr points to "informatyk mpabi 0\n", and slen is called to compute
its length, stored in x.

3 Debugging Strategy

The debugging process uses GDB with a remote target (port 3333) to verify the slen

function. The strategy includes:

• Setup: Connect to the target, load the program, and set breakpoints.

1

• Execution Control: Step through instructions and continue to breakpoints to
inspect slen’s execution.

• Memory Inspection: Verify the string pointer and memory contents.

• State Monitoring: Use the GDB dashboard to track registers, stack, and memory.

• Iterative Testing: Reset and reload the program to ensure consistent behavior.

4 GDB Command History

The following GDB commands were executed to debug slen:

1 target extended -remote :3333

2 file prog

3 load

4 si

5 b main

6 dashboard -layout registers stack memory

7 c

8 si

9 c

10 si

11 c

12 laod % typo , likely meant load

13 load

14 c

15 c

16 c

17 radix 16

18 set radix 16

19 p/x ptr

20 p/x *ptr

21 p/c *ptr

22 p/s *ptr

23 print &ptr

24 p ptr

25 dashboard memory set 0x800000c0 32

26 dashboard memory watch 0x800000c0 32

27 dash

28 p/x &ptr

29 p/x ptr

30 p/x *ptr

31 dash

32 dash

33 clear

34 dash

35 si

36 monitor reset halt

37 si

38 si

39 exit

2

40 target extended -remote :3333

41 dash

42 dashboard -layout registers stack memory breakpoints

43 file prog

44 load

45 si

46 exit

47 dashboard -layout registers stack memory breakpoints

48 exit

49 dashboard -layout registers memory breakpoints stack

50 file prog

51 load

52 si

53 exit

4.1 Explanation of Commands

• target extended-remote :3333: Connects to the embedded target on port 3333.

• file prog, load: Loads the executable prog onto the target.

• b main, c: Sets a breakpoint at main and continues execution to it.

• si: Steps through instructions, allowing inspection of slen’s loop.

• p/x ptr, p/x *ptr, p/c *ptr, p/s *ptr: Inspects the ptr address, its first char-
acter (hex and char), and the full string.

• print &ptr, p/x &ptr: Checks the address of ptr itself.

• dashboard memory set 0x800000c0 32, dashboard memory watch 0x800000c0

32: Monitors 32 bytes at address 0x800000c0, likely where the string resides.

• dashboard -layout ...: Configures the GDB dashboard to show registers, stack,
memory, and breakpoints.

• monitor reset halt: Resets the target and halts execution.

• clear, exit: Clears breakpoints and exits GDB sessions.

• radix 16, set radix 16: Sets hexadecimal output for memory and values.

• dash: Likely a custom alias or typo, possibly for dashboard commands.

5 Key Checks for slen

The debugging process verifies:

• Pointer Validity: ptr points to the correct string (checked via p/s *ptr).

• Loop Correctness: The loop in slen increments n and stops at \0 (inspected via
si).

3

• Memory Access: Memory at 0x800000c0 is valid and uncorrupted (via dashboard
memory watch).

6 Conclusion

The GDB command history provides a detailed view of the debugging process, ensuring
slen correctly computes the string length. The iterative use of stepping, memory inspec-
tion, and state monitoring confirms the function’s behavior on the embedded target.

4

