© oo -~ =] ot = w [V =

R e e e
- w [V - o

=
ot

Debugging the slen Function with GDB

May 22, 2025

1 Introduction

This document describes the slen function, a C function that calculates the length of
a null-terminated string, and details the debugging process using GDB on an embedded
target. The debugging session history is included to illustrate the steps taken to verify
the function’s correctness.

2 The slen Function

The slen function takes a string pointer and returns the number of characters until the
null terminator (\0). Below is the source code:

#include <stdint.h>
const char * ptr = "informatyk mpabi O0\n";

int slen (char *s) {
int n;
for (n = 0; *s I= ’\0’; s++)
n++;

return n;

int main () {
int x = slen (ptr);
return O;

The string ptr points to "informatyk mpabi O\n", and slen is called to compute
its length, stored in x.

3 Debugging Strategy

The debugging process uses GDB with a remote target (port 3333) to verify the slen
function. The strategy includes:

e Setup: Connect to the target, load the program, and set breakpoints.

10

11

12

13

14

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Execution Control: Step through instructions and continue to breakpoints to
inspect slen’s execution.

Memory Inspection: Verify the string pointer and memory contents.

State Monitoring: Use the GDB dashboard to track registers, stack, and memory.

Iterative Testing: Reset and reload the program to ensure consistent behavior.

4 GDB Command History

The following GDB commands were executed to debug slen:

target extended-remote :3333
file prog

load

si

b main

dashboard -layout registers stack memory
c

si

c

si

c

laod % typo, likely meant load
load

c

c

c

radix 16

set radix 16

p/x ptr

p/x *ptr

p/c *ptr

p/s *ptr

print &ptr

p ptr

dashboard memory set 0x800000cO 32
dashboard memory watch 0x800000cO0 32
dash

p/x &ptr

p/x ptr

p/x *ptr

dash

dash

clear

dash

si

monitor reset halt

si

si

exit

40

41

42

43

44

45

46

47

48

49

50

51

52

53

target extended-remote :3333

dash

dashboard -layout registers stack memory breakpoints
file prog

load

si

exit

dashboard -layout registers stack memory breakpoints
exit

dashboard -layout registers memory breakpoints stack
file prog

load

si

exit

4.1 Explanation of Commands

e target extended-remote :3333: Connects to the embedded target on port 3333.
e file prog, load: Loads the executable prog onto the target.

e b main, c: Sets a breakpoint at main and continues execution to it.

e si: Steps through instructions, allowing inspection of slen’s loop.

e p/x ptr, p/x *ptr, p/c *ptr, p/s *ptr: Inspects the ptr address, its first char-
acter (hex and char), and the full string.

e print &ptr, p/x &ptr: Checks the address of ptr itself.

e dashboard memory set 0x800000cO 32, dashboard memory watch 0x800000cO
32: Monitors 32 bytes at address 0x800000c0, likely where the string resides.

e dashboard -layout ...: Configures the GDB dashboard to show registers, stack,
memory, and breakpoints.

e monitor reset halt: Resets the target and halts execution.
e clear, exit: Clears breakpoints and exits GDB sessions.
e radix 16, set radix 16: Sets hexadecimal output for memory and values.

e dash: Likely a custom alias or typo, possibly for dashboard commands.

5 Key Checks for slen

The debugging process verifies:
e Pointer Validity: ptr points to the correct string (checked via p/s *ptr).

e Loop Correctness: The loop in slen increments n and stops at \0 (inspected via
si).

e Memory Access: Memory at 0x800000¢0 is valid and uncorrupted (via dashboard
memory watch).

6 Conclusion

The GDB command history provides a detailed view of the debugging process, ensuring
slen correctly computes the string length. The iterative use of stepping, memory inspec-
tion, and state monitoring confirms the function’s behavior on the embedded target.

