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Debugging the slen Function with GDB

May 22, 2025

1 Introduction

This document describes the slen function, a C function that calculates the length of
a null-terminated string, and details the debugging process using GDB on an embedded
target. The debugging session history is included to illustrate the steps taken to verify
the function’s correctness.

2 The slen Function

The slen function takes a string pointer and returns the number of characters until the
null terminator (\0). Below is the source code:

#include <stdint.h>
const char * ptr = "informatyk mpabi O0\n";

int slen ( char *s ) {
int n;
for (n = 0; *s I= ’\0’; s++)
n++;

return n;

int main () {
int x = slen (ptr);
return O;

The string ptr points to "informatyk mpabi O\n", and slen is called to compute
its length, stored in x.

3 Debugging Strategy

The debugging process uses GDB with a remote target (port 3333) to verify the slen
function. The strategy includes:

e Setup: Connect to the target, load the program, and set breakpoints.
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Execution Control: Step through instructions and continue to breakpoints to
inspect slen’s execution.

Memory Inspection: Verify the string pointer and memory contents.

State Monitoring: Use the GDB dashboard to track registers, stack, and memory.

Iterative Testing: Reset and reload the program to ensure consistent behavior.

4 GDB Command History

The following GDB commands were executed to debug slen:

target extended-remote :3333
file prog

load

si

b main

dashboard -layout registers stack memory
c

si

c

si

c

laod % typo, likely meant load
load

c

c

c

radix 16

set radix 16

p/x ptr

p/x *ptr

p/c *ptr

p/s *ptr

print &ptr

p ptr

dashboard memory set 0x800000cO 32
dashboard memory watch 0x800000cO0 32
dash

p/x &ptr

p/x ptr

p/x *ptr

dash

dash

clear

dash

si

monitor reset halt

si

si

exit
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target extended-remote :3333

dash

dashboard -layout registers stack memory breakpoints
file prog

load

si

exit

dashboard -layout registers stack memory breakpoints
exit

dashboard -layout registers memory breakpoints stack
file prog

load

si

exit

4.1 Explanation of Commands

e target extended-remote :3333: Connects to the embedded target on port 3333.
e file prog, load: Loads the executable prog onto the target.

e b main, c: Sets a breakpoint at main and continues execution to it.

e si: Steps through instructions, allowing inspection of slen’s loop.

e p/x ptr, p/x *ptr, p/c *ptr, p/s *ptr: Inspects the ptr address, its first char-
acter (hex and char), and the full string.

e print &ptr, p/x &ptr: Checks the address of ptr itself.

e dashboard memory set 0x800000cO 32, dashboard memory watch 0x800000cO
32: Monitors 32 bytes at address 0x800000c0, likely where the string resides.

e dashboard -layout ...: Configures the GDB dashboard to show registers, stack,
memory, and breakpoints.

e monitor reset halt: Resets the target and halts execution.
e clear, exit: Clears breakpoints and exits GDB sessions.
e radix 16, set radix 16: Sets hexadecimal output for memory and values.

e dash: Likely a custom alias or typo, possibly for dashboard commands.

5 Key Checks for slen

The debugging process verifies:
e Pointer Validity: ptr points to the correct string (checked via p/s *ptr).

e Loop Correctness: The loop in slen increments n and stops at \0 (inspected via
si).




e Memory Access: Memory at 0x800000¢0 is valid and uncorrupted (via dashboard
memory watch).

6 Conclusion

The GDB command history provides a detailed view of the debugging process, ensuring
slen correctly computes the string length. The iterative use of stepping, memory inspec-
tion, and state monitoring confirms the function’s behavior on the embedded target.



