Z3
This commit is contained in:
commit
e64229a4d8
BIN
doc/main.pdf
Normal file
BIN
doc/main.pdf
Normal file
Binary file not shown.
37
doc/main.tex
Normal file
37
doc/main.tex
Normal file
@ -0,0 +1,37 @@
|
||||
\documentclass{article}
|
||||
\usepackage{amsmath}
|
||||
|
||||
\begin{document}
|
||||
|
||||
The velocity of the mass as a function of time \( t \) is described by the equation:
|
||||
|
||||
\[
|
||||
v(t) = v_{\text{max}} \cdot \sin(\omega t + \phi)
|
||||
\]
|
||||
|
||||
where:
|
||||
\begin{itemize}
|
||||
\item \( v_{\text{max}} \) is the maximum velocity (amplitude of velocity),
|
||||
\item \( \omega \) is the angular frequency of the oscillations,
|
||||
\item \( \phi \) is the initial phase.
|
||||
\end{itemize}
|
||||
|
||||
The angular frequency \( \omega \) is related to the period \( T \) by the formula:
|
||||
|
||||
\[
|
||||
\omega = \frac{2\pi}{T}
|
||||
\]
|
||||
|
||||
For a period \( T = 0.4 \) seconds:
|
||||
|
||||
\[
|
||||
\omega = \frac{2\pi}{0.4} = 5\pi \, \text{rad/s}
|
||||
\]
|
||||
|
||||
If the mass starts moving from the equilibrium position with an upward velocity, the initial phase \( \phi \) is 0. Then, the velocity equation becomes:
|
||||
|
||||
\[
|
||||
v(t) = 0.8 \cdot \sin(5\pi t)
|
||||
\]
|
||||
|
||||
\end{document}
|
Loading…
Reference in New Issue
Block a user