commit e64229a4d82718eeb3e01e2130d7d400275ba9d1 Author: baiobelfer Date: Mon Feb 17 12:42:22 2025 +0100 Z3 diff --git a/doc/main.pdf b/doc/main.pdf new file mode 100644 index 0000000..35bcee5 Binary files /dev/null and b/doc/main.pdf differ diff --git a/doc/main.tex b/doc/main.tex new file mode 100644 index 0000000..9b572d1 --- /dev/null +++ b/doc/main.tex @@ -0,0 +1,37 @@ +\documentclass{article} +\usepackage{amsmath} + +\begin{document} + +The velocity of the mass as a function of time \( t \) is described by the equation: + +\[ +v(t) = v_{\text{max}} \cdot \sin(\omega t + \phi) +\] + +where: +\begin{itemize} + \item \( v_{\text{max}} \) is the maximum velocity (amplitude of velocity), + \item \( \omega \) is the angular frequency of the oscillations, + \item \( \phi \) is the initial phase. +\end{itemize} + +The angular frequency \( \omega \) is related to the period \( T \) by the formula: + +\[ +\omega = \frac{2\pi}{T} +\] + +For a period \( T = 0.4 \) seconds: + +\[ +\omega = \frac{2\pi}{0.4} = 5\pi \, \text{rad/s} +\] + +If the mass starts moving from the equilibrium position with an upward velocity, the initial phase \( \phi \) is 0. Then, the velocity equation becomes: + +\[ +v(t) = 0.8 \cdot \sin(5\pi t) +\] + +\end{document}